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1. Introduction

There has been renewed interest in Discontinuous Galerkin Methods (DGM) re-
cently, primarily due to the discovery that variants of these methods could be used
effectively to solve diffusion problems as well as problems of pure convection. One
such DGM was presented in the dissertation of Baumann [7] and reported in the
paper of Oden, Babuska, and Baumann [18]; summary of other versions of DGMs
and a lengthy historical review of this subject can be found in the record volume
edited by Cockburn, Karniadakis, and Shu [10]. The DGM possesses a number
of important properties that set them apart from traditional conforming Galerkin-
finite element methods: they are elementwise conservative, can support high order
local approximations that can vary nonuniformly over the mesh, are readily paral-
lelizable, and, for time-dependent problems, lead to block-diagonal mass matrices,
even for high-order polynomial approximations. These properties make DGMs
attractive candidates for a broad collection of applications.

Several papers have been published in the mathematical literature on a priori error
estimates for various DGMs for diffusion problems. In particular, an analysis of
one-dimensional versions of the Baumann-Oden method was reported by Babuska,
Oden, and Baumann [2]. Error estimates for several types of DGMs and for the
related Internal Penalty Galerkin Methods were presented in the dissertation of
Riviere [19] and in the paper of Riviere, Wheeler, and Girault [20]. Several other
studies on a priori error estimates for DGMs have appeared recently; see, for exam-
ple, the report of Chen [9] and the analysis of Siili, Schwab, and Houston [22,15].
Convergence analysis of other variants of DGM can be found in [10].

In the present work, we present a detailed derivation of a priori error estimates
for several hp-versions of DG-finite element methods for linear diffusion prob-
lems (the Poisson problem) on two-dimensional domains. In some cases, important
steps in our analysis follows the approach of Riviere, Wheeler, and Girault [20], but
other steps differ in detail. We present a series of approaches in which different
versions of DGMs, including those with penalty terms, can be analyzed. Our final
estimates differ in predicted rates of convergence with respect to the polynomial
degree p obtained in [20,19] and reflect rates consistent with the computed results
of Baumann [7].

2. Notations and Preliminaries

In the present report, we shall choose the domain Q as a bounded open set in R?,
with Lipschitz continuous boundary 0Q. We will denote I'; the part of the bound-
ary 0Q on which Dirichlet conditions are prescribed and Iy the part on which
Neumann conditions are prescribed. Formally, the boundary 0Q is decomposed
into the parts 'p and Ny such that T p UTy =0Q,and Tp NIy = 2.



2.1. Finite Element Partition

Let P, denote a partition of the domain Q, i.e. P, is a finite collection of N, open
subdomains (elements) K;, i = 1,2, ..., N,, such that:

Q= U E, and KiﬂK]-:Q, 175]
KiefPh

The size and shape of an element K;, or simply K, of ), are measured in terms of
two quantities, hg and pg, defined as:

hx = diam(K),
px = sup {diam(B); B is a ball contained in K}.

We also introduce the parameter /1 associated with the partition P;:

h = hx. 2.1
maxhi (2.1)

Definition A family {‘B,} of partitions By, is said to be shape regular as h tends to zero if
there exists a number o > 0, independent of h and K such that:

h
X <o, VKeD,. (2.2)
PK

In this report, all partitions 7, are assumed to be shape-regular.

In addition, we shall associate with each element K the element boundary 0K. The
unit normal vector outward from K (resp. K;) is denoted by n (resp. n|;).

Given a partition #,, we shall denote the collection of edges of P, (points in one
dimension, faces in three dimensions) by the set £, = {}, I =1,...,N,. Edges
represent here open subsets of either Q or Q. We thus introduce the set [;,; of
interior edges as:

Ny
Fint = (U 71) \ 9Q (2.3)

I=1

so that:
N’Y
U ¥ =FpUTNUTy.
=1

In the same way, we shall decompose E;, into three subsets as:

En=EnpUE,NUEpin-



‘ ‘ / ylj
r Ny N3
D P
IK, _»Kj
n
Ny Noj
-
n
Ki

ot

Figure 1. Element interface ;; and unit nor-
mal vector n.

Then, v € &), p if it lies on ['p, and v € E, y if it lies on 'y. Moreover, as shown
in Fig. 1, 7;; € Ey, i denotes an edge (interface) between two adjacent elements K;
and K;, where by convention i > j. For each edge v, we also associate a unit normal
vector n. In the case v is an edge associated with an element K; adjacent to 0Q, i.e.
v € Ey,pUEp N , the unit normal vector is simply defined as n = n|;. For an interior
edge ;; € Ey, i, with the convention i > j, n is chosen as the unit normal vector
outward from K, so that n = n|; = —n| j (see Fig. 1). In subsequent analyses, C will
denote generic positive constants, not necessarily the same in different places.

Remark 1 Using simple geometrical properties, one can show that each edge y in a shape-
reqular partition satisfies:

1
EhK < pk < | £ kg, (2.4)

where |y| denotes the length of «y. In other words, hx and ~y are equal within a constant.
Therefore, we will interchangeably use hy or vy (preferably hy) in this report.

2.2. Spaces

Let s be a positive integer. For any given open set S (S may define the whole
domain Q, an element K of B, or an edge y of E,,), the spaces H*(S) will denote the
usual Sobolev spaces with norm ||-||s s. In the particular case in which S represents
Q, the norm will simply be denoted ||-||s. Moreover, H}(S) is the set of functions in
H'(S) which vanish on the boundary S of S, i.e.

H{(S) = {v € HY(S);v =0 0n 85},



and H(div, S) denotes the space:
H(div,S) = {v € (L%(S))*;V - v € L%(S)}.

The so-called (mesh-dependent) broken space H*(‘P;) will be defined as:
H(B,) = {v € LA(Q); v|x € H°(K), VK € B,}.

The norm associated with the space H*(‘%,) is given as:

1/2
lollsz, = ( 3 ||v||§,1<)
Kem,

where ||9||; k is the Sobolev norm on K.

We will consider finite element spaces 77 of polynomial functions, possibly dis-
continuous at the element interfaces, such as:

V" = {v € LAQ); v|x = 00 Fg', 0 € Py(K), VK € B,} (2.5)
where Fy is the affine mapping from the master element K to the element K in the
partition, and PP(K) is the space of polynomial functions of degree at most p on K.

In hp methods, the polynomial degree can actually vary from one element to the
other. Denoting pk the polynomial degree associated with the element K, we define
the global value p for the partition @, as:

p = minpk. (2.6)

One advantage of DGMs over conventional hp finite element methods is that the
polynomial degrees px do not necessarily match at the interfaces of the elements.

3. Formulations for the Poisson Model Problem

3.1. Model Problem

In this report, we shall consider the following Poisson model problem: find the
scalar function u which is the solution of

—Au+cu=f, inQ, (3.1)
and which satisfies the boundary conditions:

u = uy, onl p, (32)
n-Vu=g, only. .



Here f € L%(Q) represents the load scalar and c is a positive constant over the do-
main Q.

We now proceed with the derivation of weak formulations of the Poisson equation
on discontinuous spaces. Let u, for the moment, be a sufficiently smooth function.
The regularity of u shall be discussed later in the report, namely in Subsection 3.3.
Multiplying (3.1) by a function v in H?*(‘B,) and integrating over the domain Q, we
obtain:

[V Vutenodr= [ fodx

Unlike the classical continuous finite element approach, we shall first decompose
the integrals in the above equation into element contributions

— [ (V-Vu)vdx+ /cuvdx: /fvdx,

Ke®,

and then integrate by parts, so that:

KZT/K(Vu.VzH—cuv)dx—KZ?/M(n-Vu)vds:KZ?/Kfvdx. (3.3)
= €% €B

We observe that the boundary integrals are defined on each element boundary;
those are now splitted according to the type of boundary such as:

z/aK(n-Vu)vds: Z /(n-Vu)vds
g

KE?}, 76Z11,D

+ z /v(n-Vu)vds

’YEZh,N

+ Z (n-Vu); v+ (n-Vu); v;ds.
’Yijefh,int ij

where v; and v; denote the restrictions of v on the elements K; and K| respectively.
In the same way, (n - Vu); and (n - Vu); represents the restrictions of the fluxn - Vu
on K; and K;.

In general, except occasionally to avoid confusion, we shall simplify the notation
of these boundary integrals, by rewriting them, for instance,

Z /(n-Vu)vds:/r (n-Vu)vds,
v D

’)’E‘E},,D

S [@-Vwods= [ (n-viods.
v N

Y€ELN



Moreover, the treatment of the interior boundary integrals is as follows. Given an
edge v;; € Ey, iy shared by two adjacent elements K; and K, i > j, we first note that:

(n-Vu);v;+n- Vu)j vi=n-(Vu);v;—n- (Vu)j v,

where n is now the unit normal vector with respect to the edge ;; as defined in the
previous section. By analogy with the formula below where a,b,c and d are real
numbers:

1 1
ac —bd = E(a+b)(c—d)+ E(a— b)(c +d), (3.4)
we can write the integrand as:

n-(Vu);v;—n- (Vu)]- v;

= % (n ~(Vu);+n- (Vu)j> (v; — vj) + % (n- (Vu); —n- (Vi) ) (0; +Uj)

j

= (n-Vu)[v]+[n- Vu](v).
Here [v] and (v) respectively denote the jump and average of v on an interior edge
7ij, i > j, of any function v € H*(K;) x H*(K;), s > 1/2, i.e.
[v] =vi — v,
1
(v) = E(vi +v)).

We conveniently extend the definition of [v] and (v), following Chen [9], to an edge
v lying on I'p as:

[0] = o,

(v) =wo.

It allows us to combine the interior and Dirichlet boundary terms in only one inte-
gral as:

(n-Vu) 0+ (n-Vu) opds+ 5 /(n-Vu)Uds

Vi€ Epint * Vi V€ELD T
:/ (n-Vu)[v] + [n- Vu] (v) ds.
MUl D

Remark 2 Note that when u € H*(Q), the fluxes [n - Vu] are continuous almost every-
where in Q, which yields

/ [n-Vul(0)ds=0, Voe HA(B)). (3.5)

int



Consequently, (3.3) can now be reduced, when u € H*(Q) and applying the Neu-
mann boundary condition, to:

> /(Vu-Vv+cuv)dx—/ (n-Vu)[olds= % /fvdx+/ quds.
Kem, 7 K FintUT D Kem, /K Y

We introduce the following bilinear form B(-, -) defined on H2(‘B,) x H?(‘P,) and the
linear form F(-) defined on H%(‘B,) such as:

B(u,v) = Z /(Vu-Vv—i—cuv)dx, (3.6)
Kem, /K
F(v):Kele | /K Fodx + /r gods. (3.7)

We also consider the bilinear form J(-, -) on H?(B,) X H(‘B,), which incorporates all
boundary integrals on ;,,; and I'p, as:

J(u,v) = / (n-Vu)[v]ds. (3.8)
FintUl D
Then, a general discontinuous weak formulation of the Poisson equation reads:

B(u,v) — J(u,v) = F(v),  Yov € HX(B,). (3.9)

This above variational form constitutes the starting point to derive formulations of
various Discontinuous Galerkin Finite Element Methods (concisely, DGMs.)

3.2. Weak Formulations and Finite Element Discretizations

All the formulations presented below use the observation that, for u € H'(Q) N
H?(B,), the jump [u] vanishes on each Vit

/ olulds=0, Vo€ LX(y;). (3.10)
Yij
It follows that:
/ (n-Vo)[ulds=0, Voe HX(®). (3.11)
r.

int

Moreover, the Dirichlet boundary condition can be applied in the following weak
manner:

/r(n-Vv)uds:/r (n-Vo)upds, Vo HXB). (3.12)



Therefore, introducing the linear form Jy(-) defined as:
Jo(@) = / (n-Vo)ueds,  Voe HXB,), (3.13)
I

we observe that, for u € H'(Q) N H?(,) and u = ugon p,

J,u) = Jo(v), Vo€ HAB). (3.14)

3.2.1. Global Element Method - GEM

Introducing the bilinear form B_(-, -), the subscript — referring to the fact that we
substract the term J(v, u) to the left hand side of (3.9), and the linear form 7_(-)

ﬂ—(uav) = B(M,U) - ](M,U) - ](Ua u)a

(3.15)
F-(v) = F(v) = Jo(v),
the Global Element Method consists in finding u such that:
B_(u,v) = F_(v), VYoe& HXP,). (3.16)

One advantage of this method is that it defines a symmetric problem. On the other
hand, a significant disadvantage is that the bilinear form is not guaranteed to be
semi-positive definite. When dealing with time-dependent problems, this could
imply that some eigenvalues have negative real parts, causing the formulation to
be unconditionally unstable.

The corresponding finite element discretization of the above problem consists in
finding u;, € V"7 such that:

B_(u,,v) = F_(v), Voe V. (3.17)
This method was introduced by Delves et al. [11-14] with the particular objective
of accelerating convergence of iterative schemes.
3.2.2. Symmetric Interior Penalty Galerkin Method - SIPG

To enforce stability of the discontinuous method, i.e. continuity of the solution at
the interface of the elements, penalty terms have been added to the formulation by
Arnold [1] and Wheeler [23]. Let us introduce the following penalty terms:

J7(u,v) = z /a[u][v]ds+ Z /auvds:/rl o o [u][v]ds,

VijEZh,int /Yij VEZH,D v

and

J§ (v) = z Uuovds:/ ougovds,
Y€EnD 7 o



where o represents the penalty parameter which depends on the length of the
edges 7; and < and the polynomial degree used in the elements; namely o =
o(h, p). Then the SIPG method is similar to the GEM except for the penalty terms.
Indeed, introducing the forms:

@f(u, U) = B(M,U) - ](M, U) - ](Ua 1/[) +]U(M,U),

” ” (3.18)
F2(v) = F(v) — Jo(v) + J§ (0),
the Symmetric Interior Penalty Galerkin problem is to find u such that:
B (u,v) = F°(v), VYo H*(B). (3.19)

Note that when ¢ takes on the value zero, we naturally retrieve the GE method.

The finite element analogue of problem (3.19) is to find u;, € V"7 such that:

B (uy,0) = F°(v), VoeV". (3.20)

Remark 3 Following Baker and Karakashian [5,6,161, we consider a variant of the SIPG
method. Instead of using the formula (3.4), one may use:

ac —bd =ac —ad +ad —bd =a(c —d)+ (a — b)d (3.21)
so that, by analogy:
n-(Vu);vi—n- (Vu)j vj=n-(Vu);[v] + [n- Vu]o,

and, since the fluxes, for u € H?%(Q), are continuous across the interelement boundaries, we
have:

/

The new bilinear form for the boundary terms is now defined as:

(n- V) 0+ (n- V) 0;ds = [ n-(Vu)[o]ds.

ij Vij

I(u,v) = / n - (Vu),;[v]ds

intU[_D
so that the new formulation reads: Find u € H(Q) N H2(‘B,) such that, for all v € H*(B,),
B(u,v) — I(u,v) — I(v, u) + J° (u,v) = F(v) — Jo(v) + J§ (0). (3.22)

We now see that we recover the SIPG method from the Baker-Karakashian formulation by
replacing the term n - (Vu); by (n- Vu). It follows that all the properties associated with
the SIPG method will also apply to the Baker-Karakashian formulation.
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3.2.3. Discontinuous hip Galerkin FE Method - DGM

The discontinuous Galerkin method by Baumann et al. [7,18] differs from the Global
Element Method by just a sign. Indeed, by introducing the forms:

$+(M,U) - B(ua 7)) - ](M,U) + ](U’ u)’

(3.23)
F+(v) = F(v) + Jo(0),
the DG formulation reads: Find u such that
B, (u,v) = F.(v), VYo& HXP). (3.24)

It is straightforward to show that the bilinear form is positive semidefinite.
The associated finite element version of the DG method consists then in finding
uy, € VM such that

B, (uy,0) = F(v), Yoe V. (3.25)

3.2.4. Non-Symmetric Interior Penalty Galerkin Method - NIPG

This method was introduced by Riviere [19] and Siili, Schwab and Houston [22,15]
and is inspired from the DG method with the addition of penalty terms. The new
bilinear and linear forms read:

Qﬁ’_(u,v) = B(M, U) - ](u,v) + ](Ua 1/1) + ]U(ua U):

(3.26)
FZ(0) = F(v) + Jo(v) + J§ (0),

so that the problem to solve by the NIPG method becomes: Find u such that

BI(u,0) = FZ(v), Vo€ HYB,). (3.27)

Once again, we may consider DG as a special case of NIPG with o = 0.

The finite element problem corresponding to the NIPG formulation (3.27) is to find
uy € V" such that

B (uy,0) = FL(v), Vo€ V", (3.28)

The four methods presented thus far are all very similar, except for a plus or minus
sign in front of the term (v, u) and the addition of a penalty term J?(u, v) or not. We
shall see in the remainder of this report how these changes modify the properties
of the respective formulations.
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3.3. Equivalence of Strong and Weak Problems

We shall show the equivalence of the strong and weak formulations only with re-
spect to the Global Element method. The results are identical for the other formu-
lations, namely the SIPG, DG and NIPG methods. Existence of solutions of the
discontinuous formulations is then somewhat guaranteed. However, we empha-
size here that Theorem 3.1 does not infer anything about the uniqueness of the
solutions. This question still remains an open issue.

Theorem 3.1 (GE Method) Let u € C%(Q) be the solution of Problem (3.1)-(3.2). Then
u satisfies the weak formulation (3.16). Conversely, if u € H'(Q) N H*(‘B,) is a solu-
tion of (3.16) then u satisfies the partial differential equation (3.1) and boundary condi-
tions (3.2).

Proof: The first part of the theorem has been proved along with the derivation of
the Global Element formulation, since (3.9) is satisfied when u € C*(Q).

The converse follows the proof given in Riviére [19]. Let D(K) C H?(K) be the
space of infinitely differentiable functions with compact support on element K and
let v € D(K). Then (3.16) gives:

/ (Vu-Vo+cuv)ydx = / fodx

K K

which implies, after integration by parts and since v is arbitrary in D(K), that
—Au+cu=f, a.e. in K. (3.29)

Next, we consider an interior edge v;; shared by the elements K; and K;. Let v be
a function in Hj(K; U K;) C H*(K;) x H*(K;), extended by zero outside. Then the
boundary terms J(u, v) and J(v, u) vanish, because [u] = [v] = 0 on +;;, and the weak
formulation (3.16) reduces to

/ (Vu-Vo+cuv)dx = fodx (3.30)
On the other hand, multiplying (3.29) by v, integrating on K; and K; and using
Green’s formula, we have:

/(Vu-VzH—cuv)dx— (n-Vu)ivds:/fvdx,
Ki Ki

Vij

/ (Vu-Vou+cuv)dx —

K; Vi

-Vu);vd :/ dx,
(n-Vu);vds Kjfv X
so that

/K,-UK/- (Vu-Vv-l—cuv)dx—[y“ [n-Vu]ods :/ Fodx. (3.31)
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Comparing (3.30) and (3.31), one observes that:
[n-Vu]ods =0, Vo € Hj(K; U K)).
Vij

Then, [n-Vu] = 0 for all element edges ;;, which implies Vu € H(div, Q). This
allows us to conclude that u satisfies Poisson Equation globally on Q, i.e.

—Au+cu=f, a.e. in Q. (3.32)

To recover the Dirichlet boundary conditions, we now consider a function v €
H}(Q) N H(Q), so that integrating (3.32) provides:

/ (Vu-Vo+ cuv)dx = / fodx,
Q Q
whereas (3.16) yields:

/Q(Vu-VzH—cuv)dx—/FD(n-Vv)uds:/vadx—/rD(n-Vv)uods.

Substracting both equations, we obtain:
/ (n-Vo)(u—up)ds =0, Vo€ HY(Q)NHA(Q),
)

and conclude that u = ug on I'p.

In the same way, choosing v € H>(Q) C H?(‘B,) such that v = 0 on I'p, we get:
(n-Vu—g)vds =0,
M
sothatn-Vu=gonly. O

Remark 4 When c is zero, C>(Q) can be replaced in Theorem 3.1 by H'(Q) N H2(‘B,) since
Vu € H(div, Q).

3.4. Properties of the Bilinear Forms
3.4.1. Mesh-dependent norms

We now introduce norms associated with the bilinear forms:

1. Energy Norm:

lolg, = B@o)= 3 Ill2c=3 (IVolix+cloldx) (3.33)
Kefh KEQ’}I
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2. Norm proposed by Siili et al. in [22,15]:

lolff, = B.0)+ ) @,0) = ol g, + [ olofds

iUl D

(3.34)

3. Norm proposed by Baumann et al. in [7,17,18] and by Baker and Karakashian

in [6]:

1

2 2 2

ol =l +/ —(n-Vov)“ds
l ”liPh | ||n?h e 0( )

We note that the energy norm becomes a seminorm when c is zero.

3.4.2. Continuity of the bilinear forms

(3.35)

We shall show now that the bilinear forms By (-,-) and B{(:,-) are continuous on
H?(B,) with respect to the norm Il 5, defined in (3.35). Unfortunately, we are
unable to show continuity with respect to the other two norms (3.33) and (3.34).

Theorem 3.2 (GEM and DGM) Let B, (-, -) be the bilinear form defined either in (3.15)

orin (3.23) . Then,
Be,0)| < lully, llolly,,  Vu,Vo € HA(®).

Proof:

First note that:
B (u,0)| = |B(u,v) — J(u,0) + J(0,u)|
< [B(u,v)| + |J(u,0)[ + |] (v, u)]
It is clear that

B0l < Y [ 1Vu- Vot curldx < e, [ollos,
Kem, 7K

The first boundary term gives:

Jaol< [ | VLol ds

rz'nfUFD

< \// o1 (n-Vu)ds \// o [0]*ds.
FintUl D iUl D

Likewise,

] (v, u)| S/ |(n- Vo) [u]|ds

Il D

< \// o [u]*ds \// o1 (n- Vo) ds.
MUl D iUl p

(3.36)
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In consequence, we have, using the discrete Schwarz inequality (A.1):

B, 0)| < [utlleg, 0]l

+ \// o~! (n-Vu)’ds \// o [v]*ds
Fint Ul D FintUl D

+\// o [uf ds\// o~1 (n- Vo)’ ds.
iUl D iUl D

\/||u||e 2, o [ul? ds+/ o1 (n-Vu)*ds
mt D

mt

ol + [ o toldst [ oot nevo)ds
int

th D
< lellg, 10l , »

which completes the proof. a

Theorem 3.3 (SIPG and NIPG Methods) Let BI(-,-) be the bilinear form defined ei-
ther in (3.18) or in (3.26). Then,

|BL(u,0)] < Cllullg, lollg,,  Yu,Yo € H(B). (3.37)

where C is a constant, C < 2.

Proof:

As before we have:
|BL(u,v)| = [B(u,v) — J(u,v) £ J(v,u) + ] (u,0)|
< [B(u,0)| +[J(u,0)| + ] (0, )| + ] (u,v)|
< lullg, lloll 5, + 177w, 0)]-
And

o)l < |

2 2
rim‘U |0 [u] [v]l ds < \//mf 7 [u] ds \//r.intUFD 7 [U] ds.

Therefore, making use again of the discrete Schwarz inequality (A.1), we obtain:

82000 < lullg Wl +/ [ otufas /[ oropas
T Ul p iUl D

2 2 2 2
u,-i-/ olul~ds U,+/ olv]*ds
[ otwdsloly+ [ o)

int int

2 2
< \2llull /2110112,
< 2ully, ell,

and we see that C is at most equal to 2. O
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3.4.3. Coercivity of the bilinear forms in the discrete spaces

Here we wish to show that the bilinear forms B.(-,-) and BJ(-,-) are coercive in
H?(B,) with respect to the norm ||-|| g, in order to be able to apply classical theorems
for existence and uniqueness of solutions of the discontinuous methods. Unfortu-
nately, to date, we are able to prove coercivity only in the discrete discontinuous
spaces 1" and then, only for the SIPG and NIPG formulations .

Theorem 3.4 (NIPG Method) Let o = rp?/h, k being a positive number. Then, for all
k > 0, there exists a positive constant, o > 0, such that:

BI(z,2) > alzlly,,  Vze VM. (3.38)

Here « is independent of h and p.

Proof: Let a be an arbitrary real number and choose a z € 77, Then
B(2,2) — o ||zl
5 B,

—(1-a) B(z,z)+(1—a)]”(z,z)—a/ %m-vZ)st

intUl'p
Since (n-Vz) is the average of the flux at the interface of two elements K; and
Kj, the corresponding integral can be split into two integrals with integrands (n -
Vz);/o and (n-Vz);/0, each one associated with the elements K; or K; respectively.
Therefore, let v C ', U p and consider the integral associated with the element
K. Using the trace inequality (A.3) and the inverse property (A.7), we have

1 2 1 2
“(n- < =
/ya(n Vz)~ds < U||Vz||0,7

c/1
<= (h—||vZ||%,K+ ||Vz||o,K||vzz||o,f<)
K
c/1 P% 2
JC(1 . ~pk
<& (h +cth) V211«

C p%
< ZPK)g2)3,
so that, selecting o to be equal to xp2% /hx, we obtain:

1 2 C 2
— [ =(n- ds > —= .
[ 5n-V22ds > —=|Vz[

Note that, when the mesh size hg; and fik; and the polynomial degrees pg; and p;
are different from each other in the two elements K; and K; sharing the edge v;;, we
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actually choose o as

max(y . 7k

~ Vmin(lng i)

so that:

1 .
| ~@-vapds <—ﬁ||vZ||%,Ki
")/ ,

ij
Cm (hK7 K)p](

—max<pK,pK>h V2l

It then follows that:
Bl(z,z) — a|||z|||(_P (1—a—aC/k) B(z,z)+ (1 —a) J°(z,2).

Therefore, we certainly can pick a value of « such that

O<ac<
SYS13C/m

for which the bilinear form BJ(-, -) is coercive in V"7, for all £ > 0. O

Theorem 3.5 (SIPG Method) Let o = rp*/h, k being a positive number. Then, for
K > Ky, there exists a positive constant « independent of h and p, o > 0, such that:

B(z,2) > az|3,,  Vze VM. (3.39)
Proof: Let a be an arbitrary real number and choose z € "P. Then
B?(z,z) — |||z|||§) =(1—a)B(z,2)+ (1 —a) ](z,2)
—2/ (n-Vz)[z]ds — / —(n Vz)? ds
rzm‘UFD

There exists a positive number ¢ such that for every edge v € [, UT p:

2/(n Vz)[z]ds<2\// o~ {n-Vz) ds\//o[z] ds

<e /70<n Vz)2ds + — /a[z]zds
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which yields, using the result in the previous proof:

Bo(z,2z) — |||z|||3ph > (1 —a— (a+6)c) B(z,z) + (1 —a— 1) J°(z,2).

K 9

In order to prove coercivity, we want to find a > 0 such that both factors in the
inequality are positive, in other words:

1
(1—(1—(a+5)%)>0 and (1—a—g>>0.

The second inequality requires that:
1
O<a<l—-
€
which means that

e>1.

On the other hand the first inequality requires that:

1-eC/k _1-C/k _Kk—C
< <
1+C/k = 14+C/k ~— k+C

0<a<

This completes the proof by taking x sufficiently large, namely x > ko (where for
instance kg > C.) O

Remark 5 We note that B{(-,-) (for NIPG Method) is coercive in H?(B,) with respect to
the norm ||-|| ¢,. Indeed, for all v € H* (%),

B (v,v) = B(v,0) — ](0,0) + ](0,0) + ] (0,0) = ||v||5, - (3.40)

1t is also straightforward to show that B, (-, -) (for DGM) is coercive in H*(‘B,) with respect
to the energy norm ||-||o,p,:

@.}_(U, U) = B(Ua U) - ](U, U) + ](U, U) = B(U, U) = ||U||§,?]Z (341)

These results will be crucial in deriving a priori error estimates in the next section.

4, A Priori Error Estimates

4.1. SIPG and NIPG Methods

Theorem 4.1 Let u € HY(Q) N H3(‘B,), s > 2, be a solution of (3.18) (SIPG) or (3.26)
(NIPG) and uy, be the discrete discontinuous solution of

B (uy,v) = F(v), Yoe& V", 4.1)
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Then, choosing o = kp*/h, (k > 0 for NIPG and K > kg for SIPG), the numerical error
e = u — uy, satisfies:

n—1

h
lelle,s, < C

where p = min(p +1,s) and p > 1.

4.1.1. Proof of Theorem 4.1 for SIPG and NIPG

First, by definition of the norms, we note that |le[[.,s, <[]l . In other words, it

suffices here to estimate the error with respect to the norm ||-f|,,. The proof is
inspired by [5,6,16] where the authors have derived the rate of convergence in h
only for the SIPG method of the (3.22) form. Here we extend their results to the
NIPG formulation as well and also show for both methods the rate of convergence
inp.

Proof: Let z, be an interpolant of u in V", We shall use the notation n = u — Zp
and & = uy, — zp so that e = u — u;, = n — {. Applying the triangle inequality, we
have:

llell g, = lu = unllg, = lln = €llg, < linllg, + €, -

From the coercivity of the bilinear form B{(-,-), since £ € V P we have

l€llz, < CBLE.&).

and from the “orthogonality” property BY(u — uy,,v) = 0, Vo € V", we get
BL(E,6) = BL(m,6), Yoe V.

Using the continuity of B(-, -), we know that

BL(,€) < Clnllg, I€ll4, »
which implies
€Nz, < Clinllg, -

Finally, we have

llell s, < linlls, + €l < Clinllg, -

We recall here that C is a generic constant independent of /1 and p which takes
different values at different places.
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We now choose the interpolant z, as defined in Lemma A.7. Then:

Inllz, = 3 / (V0P +en?) dx+/ (n-Vn) ds+/ o [n]*ds
K ur
Ke®, Tt Ul D FintU
(4.3)

The integrals in the leading term are estimated as, using (A.8):

h/H ’
JIvnPdx<c e, s>,
PK
2 g\
/Kcn dx <cC (P_%) ||u||bK, s >0,
so that
hZ,LL 2
/(|V77|2+cn)dx<c Kl s>
PK

Let v;; denote an interior edge shared by the elements K; and K;. Then, using the
inequality (@ + b)> < 2a* + 2b?, we observe that

[ Gmvnras<s [ Loonidse s [ 2 (nomy)as

ij ij
In other words, in splitting the second integrals on the right hand side of (4.3) as
above, we actually associate with each v € £y, ;,; U E}, p an element K, such that
1 1
—(n-Vn)ds < — 2
| 5 @V ds < il
cr/1
< (vl c+ 19 nlod Tl
o \ ik

<

1
|l + Il k1l
hx

1R n 1h“ ?
ot Iulf5,x
K Pk P PR

C (1 g
— F_FPZS Jull3 x

7 \ Px X

¢
g
E

I/\

IA

Ch2“ 3

—allullék
K

Ch~?
= EppT

S op

[ullfg, — s>2.
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Again, for an interior edge v;; shared by K; and K;, using (2 — b)? < 2a% + 2b%, we

have:
/

This means that the edge integrals making the third term of (4.3) are bounded by:

o[n)ds = /

Vij

UOh—ﬁﬂzdSSZ/‘

o () ds + 2/ o (nj)*ds
Vij Vij

i

[ omPds < Co-k—pul < Crt|ull ¢
g Px K

In combining the above results, we thus obtain

2u-2  2u=2 g 2u-2 1/2
lellg, < Cllnllg, <C > { St St p12<5_3} [Juells,x

Kem, | Pk Px K
!
<C Y il
2 e’
he1
< Cﬁ [l
which is the expected a priori error estimate. O

4.1.2. Alternative Proof of Theorem 4.1 for NIPG

Alternatively, we present a second proof of Theorem 4.1 for the NIPG method only
as it is based on the nonsymmetry of the formulation. The proof is inspired by
the one found in [22]. However, our rate of convergence with respect to p was
improved from (s — 2) to (s — 3/2) using the interpolation estimates of Lemma A.7.
Later, the same authors proposed in [15] a comparable version of the proof with
(s —3/2) as the rate of convergence.

Proof: Once again, z, is the interpolant of u in 7 as defined in Lemma A.7. and
we denote 1 = u — z, and £ = uy, — z; as before. Then,

e

e.s, < llellg, = [lu = uplla, =ln = &llg, < llnllg, + (€],

Moreover, from the definition of B{(-,-) and the norm ||-|..4, (see (3.40)) and the
“orthogonality” relation, we have:

1€]13, = BI(E, &) = BI(n,§).

The goal is now to bound B7(n, §) in terms of ||£||,. Recall that:

BL(n,€) = B0, ) +]7(n,&) — J(n,€) + J(&,n)
< B, O+ 7 (m, O + [/ (m, O + )€, m)]



21

The first term on the right hand side of the equation above gives:

B, I < > A|vn'vf+cn£|dx§||77||e,£P;,||'£||e,Thf”n”%“&”g-
Kem,

The term |]?(n, )| is bounded by:

rool< [

2 2
< \//r,-muruo[n] ds\//r,-murug[g] ds

< linllz, €],

- o [n]1€]] ds

whereas we have for the third term:

Jm©I< [ ln-Valgllds

int D

< \// o1 (n-Vn)2ds\// o [€]7ds
rim‘UrD rim‘UFD

e[ e e
riﬂtUFD
Likewise, J(£,n) is bounded by:

eI <l [ o7 n-VERds

Using again the trace inequality (A.3) and the inverse property (A.7), it is shown
that:

1 2
[ S veras < SFe vl
')l O-hK ’

g

In other words, using o = kp% /g

7€ m| < Clinlls,[I€]l,

Combining the above results, we have:

1 2
p <C —{(n- ds| <C p
lella, < me+¢éwbgnvm ﬂ_ Il

so that:

lelle,z, < llell, < lInlla, + lIEll2, < lnllg, + Clinlly, < Clinllg, -

We conclude the proof by employing the estimate on |||, shown in the previous
proof. O
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4.2. DG Method

We recall that the DG formulation proposed in [7,18] is deduced from the NIPG
method by simply setting the penalty parameter o to zero. However, unlike NIPG,
continuity and coercivity of the bilinear form B, (-, -) cannot be proved simultane-
ously using the same norm. At best it is shown that:

B(©,0)=[[v]p, Vo€ HX(B),
and that:
B (u,0) < |[ullg, 0llg »  Vu,0 € H(By).

The main issue in finding a priori error estimates for the error e = u — u;, in the nu-
merical approximation u;, of the DG problem consists in deriving an upper bound
on:

[ lerds
FintUlMp

with respect to the norm ||¢[|,, 5, when ¢ = 0. This integral does indeed appear when
bounding the term J(7,£), i.e.

2 2
o< [ feevnilds< /[ evnas [ jetas

We present below two approaches, by treating separately the case when c is zero
and the case when c is nonzero.
4.2.1. A priori error estimate when c is nonzero

We find it instructive to analyze the special case in which c is strictly greater than
zero. In this case, we still can use the methodology presented earlier for the NIPG
method. However, we shall see that the rate of convergence with respect to the
mesh size becomes suboptimal as stated in the following theorem.

Theorem 4.2 Let u € H'(Q) N H(‘B,), s > 2, be a solution of (3.23) with ¢ > 0 and uy, be
the discrete discontinuous solution of (3.24). Then, the numerical error e = u — uy, satisfies:

h#=2
lelle,s, < lelulls (4.4)
where yp = min(p + 1,s) and p > 1.

Proof: Using the same procedure and notation as before, we have:

lelle,z, = llu = unlle,q, = l1n = Elle,a, < lInlle,q, +1I€]le,,-
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Moreover, from the definition of B, (-,-) (see (3.41)) and the “orthogonality” rela-
tion, we further show that:

1€112,5, = B+ (€, €)
=B:(n,¢)
= B(n,&) —J(,&) +J(&,n)
< B, |+ 11(n, )| + [J(€, )

We now consider each term one at a time. The first term B(n, £) is straightforwardly
bounded by:

i1
1B, ] < Inlle,, 1€ lle,m, < C [[eells[€]le,e, (4.5)

We expect that the third term J(£,7) can be treated as before and should not pose
any problems. Indeed, applying the Cauchy-Schwartz inequality, we have:

], m)| < \//rmtU (n-V¢) ds\// [1]*ds

trzt

When «y C [, UT p and ¢ € V7(K), we have already shown that:

2
/ (n- V&?ds < CPK|ve|2 .
v hy ’

Next, we obtain from the approximation property (A.9)

hZu—l
[ s = lInli3, < Culi
g Px

Therefore the term J(£, n) is bounded by:

pu1
[J(€,m| < CW

Finally we need to consider the term J(7, {), which is held responsible for deterio-
rating the convergence rate of the solution. By the Cauchy-Schwarz inequality, we
have:

mol<y /[ m-vnas [ ks

Once again, the approximation property gives

th 3
[ 2 ds < il
p k)
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while from the trace inequality (A.3), we have:

1
€l < € (-1l -+ €0l Vel

IA

1 1
C (7 NelB x+ - ElB x + el VEIR
hk hk
1
< (el + el Vel 46

1 2
< -
~ C (Ch[( ||£ 8,K>

C
< _—
< 5l

g,K“"hK”f

2
e,K-

It is important to point out here that the norm |[[{||y , is bounded as long as ¢ > 0.
Then we have:

=2
J(n,€)] < lelullsllﬁlle,fh-

In conclusion,

N N 2
ek, < € (e + s + s ) el < Comglal

which completes the proof. O

Remark 6 Note that C is inversely proportional to c. Therefore the error is expected to
grow as c gets smaller.

4.2.2. Discussion of the case in which c is zero

The operator, when c is zero, reduces to the pure Laplacian. In this case, the energy
norm [|-||,,5 becomes the seminorm ||V-||o 4. Following the same procedure as
before, we would have:

IVE(G.5 = Bi(,6) = Bi(0,€) (4.7)

where n = u — z,, £ = uj, — zp and z,, defines an arbitrary interpolant of u on Y.
However, from (4.6), we can see right now that the term B, (1, {) would then be
bounded by ||¢[/o,s,- In turn, it is impossible to bound ||[|o,5, with respect to
IV&|lo,5, Therefore, the previous methodology to obtain error estimates cannot
be applied in the present case.
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Suppose that we introduce an elementwise constant function £ to be defined later.
Then, we can rewrite (4.7) as:

IVEIS,3, = Bs(n,€) = Bi(n,€ — & +&) = Bo(n, & — &) + B (1, 8). (4.8)

Suppose now we can construct a new interpolant such that:

By (n,€) =0. (4.9)
Then we would have

IVEIR.5 = Br(n,) = Bi(n, & — &)
=B, &~ &) —Jm, &~ +J(E —E&n) (4.10)
= B(n,&) — J(n,& — &+ J(€,m)

We have seen that the terms B(n,£) and J(§,n) are easily bounded in terms of
|IV&]|o,2,- The other term reads:

Jone=0=[ _(a-Vnle-§ds.

According to Lemma A.5, this integral can be bounded with respect to || V{||o,s,
under the condition that £ is chosen as the average of £ on each element.

This approach has been followed in principle by Riviere, Wheeler and Girault
in [20,19] where they construct special interpolants mu which satisfied (4.9) and

I
llu — mullo,x < C—=5lullsx,
K
p—1
IV (u = 7u)llo.x < C—==llulls
Pk
n—2

IV — mu)llo,x < C— =5 llulls
K

where p = min(pg + 1,s), s > 2, px > 2. Using these interpolants, they were able
to derive an a priori error estimate of the form:

1
1Vello,, < CFHL{HS' (4.11)

Although the rate of convergence is optimal in &, we show next that the rate of
convergence in p is in reality better than (s — 4). We improve this result by con-
structing better approximation properties for the new interpolant and by refining
the analysis.
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4.2.3. New Interpolants

Lemma 4.1 Let K be a triangular element of the partition ‘B, and u a function in H*(K),
s > 2. There exists a positive constant C depending on s and p but independent of u, pg,
and hy, and a polynomial wu € Py, (K), px > 2, such that

/ n-V(u—mu)ds=0,  VyC0K, (4.12)
v
and
h
= il < C—
K
pet
||V(u—7m)||o,1<SCSIf—MHuHs,K, (4.13)
Pk
n—2
V2 — mu)lo,x < C—=E— |lulls .,
K

where p = min(pg + 1, ).

We present the proof of this theorem for triangular elements only. The proof is
similar for quadrilaterals.

Proof: Let the triangle K € Q be the image of the master element K by the affine
mapping Fx as shown in Figure 2. The mapping Fx is often rewritten as:

Fx(R) = BX+b (4.14)

where B represents a two-by-two matrix whose components are independent of X
and b is a two-dimensional vector. Here, v will refer to the edge between node
N, and N3, unless stated otherwise, and 4 on K will denote its image by F 1. We
associate with 4 and -y the unit normal vector fi and n, respectively.

Given 5 € H%(K), namely n = u — zp, where z, is the interpolant of u as defined
in Lemma A.7, the objective here is to construct a polynomial function g in %"7(K)
such that:

/n-Vnds:/n-qus. (4.15)
gl v

Indeed we would have:

/n-V(n—q)ds:/n-V(u—zp—q)ds:/n-V(u—(zp+q))ds:O,
gl gl v

and the new interpolant could be derived as mu = z, + 4.
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A N,

F

1.0 K
n
Q0 y \
RN &
N, X
—

0.0 1.0

Figure 2. Reference element K and mapping Fx from K to the ele-
ment K in the physical domain.

Following [19], and assuming px > 2, we introduce the polynomial function 4,
associated with the edge 4 on K:

Gy =Cy(l =2 =D&+ D), V&= (%,19) € K. (4.16)

where C, is a constant to be defined. We observe in Fig. 3 that such a polynomial
function satisfies:

with 4;; defining an edge on Kjoining the nodes N; and N -
The constant C, is found so that (4.15) is satisfied in the physical space. Further-
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Figure 3. Polynomial function 4, on the reference element K.

more, we obtain an upper bound for C, (see Riviere [19]) as:

IC,l < ClBIPIBT 21Vl
2

2 ~
hi h 1/2
<C|— — | h \%
< (p) (p1<> £ 1IValloy
2
<Co? (;> 119 7lo,,

<ChY*Vnllo,

1/2
< € {IVall x+ i Vnllo,xl1Vnllo.c }

where we make use of the Trace Inequality (A.3). We also observe that:

9+ llo.x < CldetB["? ||l ¢
< Chg|C,y[IK]
< Chy|Cy).

Likewise, we have:

||V’77||0,I< < C|C7|
||v2‘77”0,1< < ChE1|C7|

So far, we have carried out the analysis for the edge v between node N, and Nj.
We point out that the same results are obtained for the other two edges. We then
associate with each edge 712, ¥23, ¥31, @ polynomial g1, g23, 431 respectively such
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that

G12=Cp9(1 —19)
s =Cxul—-2—-9)(E+1)
Ga1 = Cz1 X(1 — %)

Adding these polynomial functions together, we construct on the element K a new
function g € P,(K)

g(x) = q12(x) + g23(x) + g31(x), Vx € K,
which satisfies

n-VqlzdS:/ n-Vrnds,

Y12 712

/ n-qus:/ n-V(qlz+L]23+L]31)dS:/
712 712

n-qugds:/ n-Vnds,

723

n-anldS:/ n-Vnds.

V31

/ n-qus:/ n-V(Q1z+Q23+Q31)d5:/
Y23 723

V23

/ n-qus:/ n-V(qlz+L]23+L]31)dS:/
V31 V31

V31

In other words, there exists a function wu € Pp(K), mu = z, + g such that

/n-V(u—wu)ds:O, Vv C OK.
v

Now, by the triangle inequality,

o,k +1q
<||nllo,x + ll912l0,x + 19230, + [|931]l0,k

lu —mullo,x < |lu—z, 0.K

2 5 1/2
< l[nllox + Clxc {17013 k& + Il Znllo |V nllo i}

_ 1,0\ 1/2

W h2r=2 PRt g2

<C{§+hK (% +h— 7 [l s,k
K K Kk Px

Kk pkt
< C{—f +hKSK—3/2} [l s,k
Px Pk
k
< CS_—3/2||”||S,K-
K
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In the same manner, we find:
1V —mu)llox <[V —zp)llo,x + I Vallo,x

<[|Vn 0./ V2n

1/2
o+ C{IVnll3 i + |V ok}
h,ufl h,ufl
<C Lo+ L

pb s—3/2
K Pk

1
< CWH“Hs,K,

s,K

and

IV (u — )

lo.x < V2w = zp)llo.x + [1V?q

0,K

B 1/2
< [IV2nllo + Ch {11 « + i IVl }

s
§ C ) + hE s—3/2 ”u”S,K
Pk Px

2
< CPS_ZH“HS,K-

We observe that the first two estimates are governed by the rate of convergence of
ll9]lo,x and ||Vql|o,x respectively, while the last estimate is governed by the rate of
convergence of || V27||o k- O

4.2.4. A priori error estimate when c is zero

Theorem 4.3 Let u € H(Q) N H%(B,), s > 2 be a solution of (3.23) and uy, be the discrete
discontinuous solution of (3.24) with ¢ = 0 and p > 2. Then, the numerical error e =
u — uy, satisfies:

1
IVelos, < gl @.17)

where p = min(p 4 1,s).

Proof: Let 7u be the interpolant of u in 97, defined on each element K of B, as
in Lemma 4.1. We also introduce n = u — 7mu and £ = u;, — mu. Using the triangle
inequality, we have:

IVello,s, = IV = Ollo,z, < IVallo,a, + IVE]o,2,
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and from (4.7) and (4.8), we recall that:
IVEIS.0, = Br(n,6) = Bi(n,€ — &) + By (0, §).

Here £ is chosen as the average of £ over each K, i.e.
gL / ¢dx, Ke®
- |K| K ’ h-

We note here that the authors in [20,19] chose £ as the average of £ over each edge
and their proof is thus slightly different from ours.

This particular choice of the interpolant u and piecewise constant function £ does
indeed yield:

——[ (Vo) [Eds

intUl D

=—[€] /r UrD(n-Vn)ds
=0

since the last integral is zero according to the property (4.12) of the interpolant 7.
Therefore

IVEIG.0, = Bi(m,€— &) (4.18)

We now show how B,.(1,£ — £) can be bounded with respect to ||V&||o 5. We nat-
urally have from (4.10)

The first term gives, using the approximation properties of Lemma 4.1 and the
discrete Schwarz inequality:

Bm, Ol < 3 [ IVn-Veldr< 3 IVlloxlVellox

KED, Ken,

< 5 Mk udvel

= 2 p§<_3/2 s,K 0,K
=1

< lelullsllvﬁﬂo,%
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The third term is treated as usual. We have

(€ m| < /r .

int D

<cs 3

KEfP;, 7€8K\FN

<Cy g\r IVE&llo,ylImllo,y
N

Ke®), yedK

From the trace inequality (A.3) and the inverse property (A.7), we show that:

1 1/2
V€l < C{ IVl + V€l V€ e |

1/2
i 3

<C h’ij‘znvgno,K

K

2
0,1<COZ—[<

and, from the approximation properties of Lemma 4.1:

1 1/2
Il < € {7l + Il ¥l |

<<:{1 L L S S }1/2
= s—3 11U xkt
hy p%( -3 S5 p; 3/2 p; 3/2
_ 1y 1/2

h2,u 1 hZ,u 1}
<Cg L+ £ llulls,x

{p?ﬁ S :

u—1/2
SC K 3/2||u||SK

K

In conclusion, we find that:

B 1/2
7€, <C Z ||V§||01< f 5 [lulls,x
Ke®, K pK

het

<C K

Kezfa il
pr-1

< CWllullsllvﬁllo,gl.
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In the same manner as before, we obtain for the term J(n, £ — £)

KEQ’}, 7€8K\FN

0,y

In this case, we have using also the approximation properties of the interpolant

, 1/2
<c{Ivnlhic+ ||vn||o,K||v2n||o,K}

1K N 12
<cC i pE 3|| e 72 2|| ull
PK
h2u—3 1212 1/2
K
Sc{ﬁ3+??”%
u—3/2
<l
K

However, for the other term, we have, using Lemma A.5
1 o . . 1/2
€ = Ello < C{ 71l — &R+ 116 ~ EloVE ~ Dl
1 ) ) 1/2
<c{ilie~ 8B+ e - €l Vel

1, 1/2
< il
_C{hKhK ’ }

< || VElox

It follows that:
] P
Jme-dl<cy £ ra
Ke®, Pk
p—1
<CY o llullll €Nk
KE-Ph pK

hi1
< C Sl Vel

Combining the previous results, we finally get

el el el 71
V¢l < € (a7 + a7 + s ) el < Comglal

and this completes the proof since ||V7|[o,s, converges with a greater rate of con-
vergence than || V¢|[o 4,

O
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4.2.5. Alternative estimate when c is nonzero

We now use the previous results to review the error estimate when c is nonzero.
The new estimate is given in the following theorem:

Theorem 4.4 Let u € H'(Q) N H(B,), s > 2, be a solution of (3.23) with ¢ > 0 and uy, be
the discrete discontinuous solution of (3.24). Then, the numerical error e = u — uy, satisfies:

L

elle.q, < CWHMHs (4.19)

where p = min(p +1,s) and p > 2.

Proof: In this case, we have:

€117 2, = B+ (1,€)
= B(n,8) — J(n,8) + ], n)
=B, &) — J(0,§ — &) — J(m,&) + (&, m)
=B(1,8)—J(n,§ - &) +J(&,n)
< B, O+ 11, & = |+ (&)

if the interpolant is chosen as in Lemma 4.1.

Moreover, results from the previous theorem provide us with:

hi !
B0 < 5 [ 1VnVE-+entldx < C o fullilla,
K€,

h1 h1
&I < C sl VEllos, < € gpllulsl€le,n,

_ h=1 h=1
11,€ = O < C 7 llsll VEllo,n, < € S=zallullslille.s,

so that

=
e, < Cm”“”s’

1€

and this completes the proof. O

This time, the rate of convergence is optimal with respect to / but the rate of con-
vergence in p is worse than in the previous estimate. This makes us believe that the
error estimates for the DG method can still be improved with respect to p. Maybe
better interpolants are yet to be found.
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5. Concluding Remarks

5.1. Remarks on the Discontinuous Formulations

In this report, we studied four different formulations of the so-called Discontinu-
ous Galerkin Method (DGM). These formulations simply vary by one sign (plus or
minus) and by the addition of a penalty term (or not). However, they greatly differ
in nature from a mathematical point of view. We now review each formulation one
by one and recount our findings in the case of linear diffusion problems.

Global Element Method. Little can be proved for this method. We were able to
derive the continuity of the associated bilinear form, but failed to even obtain a
priori error estimates. This is because the bilinear form is not guaranteed to be
semi-positive definite.

Symmetric Interior Penalty Galerkin Method. The SIPG Method is similar to the
GEM except for the addition of the penalty term. However, it allows us to prove
non only continuity of the bilinear form, but also coercivity in the discrete discon-
tinuous space (for sufficiently large values of the penalty parameter), and thus a
priori error estimates optimal with respect to /1 (4 — 1) and slighty suboptimal with
respect to p (s — 3/2). One major drawback of this method is that its behavior de-
pends on the selection of the penalty parameter. If not chosen carefully, the method
can fail.

Non-Symmetric Interior Penalty Galerkin Method. The limitation of the SIPG
method is remedied by changing one minus sign by a plus sign. Indeed, although
the NIPG formulation results in a non-symmetric system of equations, all the prop-
erties and error estimates are shown to be independent of the choice of the penalty

parameter. We also find the same rates of convergence with respect to 1 and p as
SIPG.

Discontinuous Galerkin Method. DGM is deduced from the NIPG method by
setting the penalty parameter to zero. We then observe that the rate of convergence
with respect to & or p deteriorates. Also, in the case of the pure Laplacian operator,
when c is set to zero in the Poisson problem, we obtain a priori error estimates only
by defining some new interpolants whose fluxes are weakly equal to the fluxes of
the exact solution over each edge of the elements. Although the rate of convergence
in h remains optimal, the one in p is then estimated to be s — 5/2. We believe that
it might be possible to improve this rate of convergence by considering other types
of interpolants. At this point, detailed numerical experiments would be helpful to
understand how the penalty term affects the quality of the approximations.

5.2. Future Challenges

The great challenges for DGMs are to 1) prove uniqueness of the solutions of the
continuous formulations, 2) perform more numerical experiments to understand
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the role played by the penalty terms, 3) still improve the a priori error estimates for
the Discontinuous Galerkin Method of Baumann and Oden, 4) derive rigorous a
posteriori error estimates for the various formulations.

A. Appendix

A.1. Discrete Schwarz Inequality
Lemma A.1 Let {a;} and {b;} define two sequences of N real numbers. Then

N NON2 N2
l;ﬂibié (Z a?) (l;bz2> (A1)

i=1

Proof: We shall show the discrete Schwarz inequality for N = 2 first. We have:
(a1b1 + ﬂ2b2)2 = a%b% + a%b% + 2a1b1a2b2
= (@1 +a)(0 + 1) — aib; — a3bi + 2mbiashy
= (@ +a)(b] +b3) — (b — azby)?
< (a1 +a) (Ui + 1)

so that:

a1b1 +a2b2 S \/ﬂ% —I—a%\/b% + b%

The result is easily extended to N > 2 by recursivity. O

A.2. Multiplicative Trace Inequalities

Lemma A.2 Let Q define a star-shaped domain with boundary 0Q as shown in Fig. 4.
Then, for all v € H(Q)

10115,00 < <||U||(2),Q +sup |X|||U||0,Q||VU||0,Q> : (A2)

inf |X| X€EQ

XEQQ

Proof: Let O € Q be the origin and let n denote the unit normal outward vector on
0Q. From the definition of a star-shaped domain, there exists a positive constant /3
such that

Blx| < x-n.
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oQ

B Xl <x.n

Figure 4. Star-shaped domain.

Applying Green’s Theorem for the vector field u?x, we have:

/ uzx-nds:/V-(uzx)dx.
a0 Q

By the property of star-shaped domains, the first integral is shown to be bounded
below:

/ u*x-nds > in
0Q

f |x|/ u*ds > B inf |x|||u
x€0Q aQ x€0Q

2
0,0Q"

On the other hand, the second integral is bounded above:

/V-(uzx)dx:/uzv-x+x-Vu2dx
Q Q

:/Zuzdx+/2ux-Vudx

Q Q
<2fulfq+ [ Jux- Vuldx
’ Q
<2|ulfiq+2sup x| [ ul|Vuldx
x€Q Q

< 2|[ull§.q +2sup [x/[|ullo,0l Vullo.o
xX€EQ

Using both bounds, we arrive at:

2

1ull§. 00 < —— 1= ; [ull§ .0 + sup [x/[|ullo.ql Vulloo

inf [x| x€Q
X€OQ

which completes the proof. O
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Lemma A.3 Let K be a triangle or a quadrilateral such that hx < ppk (shape regular).
Then, for all v € H'(K),

1
ol < € (5ol + ol Vollo) (a3

where C is a positive constant.

Proof: Let the origin O be the center of the inscribed circle in K with radius pg/2.
We therefore have:

sup |x| < hg
xeK

inf |x| > px >h
i M 2 e /e

so that from (A.2)

20
Il ox < 5 (el + ol Vo e)

1
< 20 (-l + o Vil

The proof is complete when choosing C = 2p. O

A.3. Poincaré-Friedrich’s Inequalities

Lemma A.4 Let Q be an open, bounded, connected domain of R? with Lipschitz boundary
0Q. Let v € HY(Q) such that

/ vdx =0. (A.4)
Q
Then

[9]lo,0 < Cl[Volo,0 (A.5)

where C = C(Q) is a positive constant.
Proof: See Schwab [21, p.350] and Brenner and Scott [8, p.102]. O

Lemma A.5 Let z € Py, (K) and Z be the average of z on K, zZ = ([ zdx)/|K|. Then
1z — 2[lo,x < Chil[Vzllo,x (A.6)

where C is a positive constant independent of K and z.
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Proof: Letz € Py, (K)and v = z — Z. Then

/vdx:/z—de:/zdx—/de:|K|Z—Z|K|:0.
Q Q Q Q

By a scaling argument and Lemma A .4,
lollo,x < Chill#llo,x < CCRYkVDllg ¢ < Chl[Vollox

Substituting z — z for v, it follows that ||z — z||o,x < Chk||V(z — 2)o,k, in other
words, since Z is constant, ||z — Z||o.x < Chk||Vz||o k. 0

A.4. Inverse Property
Lemma A.6 Let z € P, (K). Then

2
I¥2llo.x < CEXjz]j0,x (A7)
K
Proof: See Schwab [21, p.208]. O

A.5. Interpolation Error Estimates

Lemma A.7 Let K be a triangle or parallelogram element of the partition P, and u a
function in H*(K). There exists a positive constant C depending on s and p but independent
of u, px, and hy, and a sequence z,, € Py, (K), px = 1,2, ..., such that forany q,0 < g <s
lIé*q

= zpllgx < CE

Pk

u—1/2 1

[ = zplloy < Cﬁ”””s,l@ s> 3 (A9)

K

s,K» s Z 0 (A8)

where p = min(pg + 1, ), hx = diam (K) and v C 0K.
Proof: See Babusgka and Suri [3,4]. O
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